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Sufficient conditions are obtained for dissipative behavior of the following equation

@ D tg@ =) W
This equation is called dissipative [1] if for any of its solutions the functions z (¢} and
' (¢) are uniformly finally bounded for ¢ — oo, The conditions found here differ from
those already known [1, 2] because in the conditions here the functions f and g can
be bounded and arbitrarily small in comparison to the force term e (¢). Namely, the
following theorem is valid,

Theorem , Letthe following conditions be satisfied,

1) Piecewise continuous functions f (z, z), g(z) and e (#) are defined for all values
of z, 2 € (— oo, co)and ¢ & [0, oo) , These functions ensure the existence of a solution
of equation (1) in any point of the phase plane zz° for any ¢ 2> 0.

2 e()=e(+e() |u@]|<e <o

t
Ea(t) = fmt)dz, | E2 ()| < En < o0
0

3) Nondecreasing piecewise continuous functions ® and ¥ exist such that
@</ )Y (2, 7, & (=00, ), 29 () 20, (x>0
e10 < SUP @ (2), —ey > inf Y (2)

4) zg(z) 2 0
limg(z) —en>—(—2E0 —0)>0, limg@) +en< —92En+0)<0
X=ro0 X—»—00

5) 18(@)|<go< oo
Then equation (1) is dissipative,
Proof 1. Instead of Eq, (1) let us examine the equivalent system

t=y+E @), y=—f@G+E@® D—g@+eal 2)
et dy|  —futEnn—g@+ealt)
dr i) y-+ E;z

In the zy plane let us investigate the curves x
T (H, a)={(z, y) : Y2y?+ G (x)+ ax = H ==const}, G(z)= Sg (x)d=
0

—ooLa, H<
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Along these curves
ay gi{z) o
7 B —-—-"“mm—-hg

By virtue of Conditions (3) and (5) of the theorem: 1 quantity b > E,, exists such that

0 (W~ Ep)— £39] o= 8030 >0 (y 2 b)
y IR 4 ot 3 230 — ol 2> & {y K~ ri}
We obtain o, from conditions
b (@ (b~ Ew) =y} ~ golin

fms 5 Bm
—b{Q(— b+ E -
P m (- §'+§$‘;§*5$&§ golies

Then we can verify by a tiiwct check that g

dy ¥ ay ay -

Flhow> ], o35 Hlao>rle <=2 ®

2, From Condition (4) of the thearem follows that & (z) does not decrease for = J»
and does not increase for » < 0. Furthermore,
B2 F{i=0 pf{fi=sx frrwtw &
Lat ws form the functions
m (C) = max {z: G (2) = C}, r(C) == wmin {2: G {x) = C}, c20

g {€) = max {z: € (z) +ogx == C}, G () b o} KO
¥ {C} = min {& & (2} — gz = T}, MG — el g O oo

By virtue of (4), m (€} and B (C) are strictly increasing; » (C) and v (¢)are strictly de~

creasing functions
m{O 20, Q)0 pO=9{O)=20
ML)~ 00, B(L)mm— 00, B(C)=co, ¥({{}s—oo for Lo

Let us examine the differences m (€) «— p (C)and v (€} — » (C) for € 20  Using the
equality Y
G (Ch + ap (O = € = &{m ()
and Condition (5} of the theorem, we find
@olh (€) = G (m) — G () & go (m— 1)
From here It follows that
miCi— g (Clwroe far C—w {5}
In an analogous manner we also prove the following relationship
Y} —n{Clwmo for C—w 6
3, Serting x (2, 2"; &) = max [ (§}-+af}, § & [z, 27}, We examin® the following
funetions for ¢ 3» 0 ¢
Sz Che= VIVIEFE Lx{n, tia) — Glz)—aaz . z2n(C)
O = V2V AR xz,m —ag) — 6 (2} + %z, 2Lm{D)
The iequalities below sre pbvious
ofr; €)= b, Tz Oy =b
Since & (s} -+ uz is continuous in 2, then x {z’, =; &) is continuoms in 2’ $nd 2°, There-
fore functions ¢ and T are continuwous in z,
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Let now k(C)=min{z:z22>2 2 n(C)=x%x(n, z; &) = G (2) + @z}
() =max {z": 2 < 2’ < m (€)= %z, m; —ay) = G (z)— & 7}

Functions % (C) and ! (C) are characterized by
E(C)=min{z': 222 >2n(C)= oz €)= b}
I(C)=mex{z:z 2 m(C)=7(x; C)=—b}

From the determination of k (€) and ! (¢) we have directly
G (k) 4 aok = max {G (§) + a0k} S max (G €) + wE} S G (1) =C
Es[n, k] t€in,o0]

G (1) — a0l = max {G () — a0k} § max (G (§) —wE} LG (m)=C
E€[im] t=lo.m]
From here it follows that

k() S 1 (G (k) + agk) < 1 (0), L) 2 (G () — agd) = (C)
Then, utilizing (5) and (8), we arrive at the statement
m(C)— k(C) = 00, L(C)— n(C)— oo for € — oo (1)

4. In the zy plane let us examine the location of trajectories of system (2) with re-
spect to curves 2(C) = {(z, y): 2= n(C), y =5 (z; O)}

T(C)={@ ¥ z2<m(C), y=1(z CO)}

Functions % (r, z; @,) and x (2, m; —o) have piecewise continuous derivatives,
Therefore

dy| _d5 [—(@@+)/y for dx (a,z; an)/ds =0
rr3 2_75"'{ 0 for du(n,z; a)/dz=g =)+ a>0
dy iil —(g(z)—an)/y for du(z,m;—ao)/dﬂ::O
Ti?T=d-2‘={ 0 for dx(z, m; —ao)/dz=g(x) —a<0

Then, taking into account (3) along curves I and T , we obtain the following inequal-

ities: ﬁy_l s @+t dy dy |
dz |2 ¥ y T dr ll‘(*/.wc(x)w.x;a.)>75|(z)
t]
ﬁg_l 8@~ dy dy
dz |v= Y T [Tt -ami-a) = dz ()

5. According to Condition (4) of the theorem a quantity a > 0 exists such that
B=inf{|g@)|—ewn}>0, @(—2Ex—0>—B, H(2Ea+0)<B 9
{x{>a

Let us examine in the region z > a, —Es < ¥ X b the curves @ (z,), which are de-
termined by the differential system

=y 4 Ey T = (y — Eyo) — B t=1 z=125 Y=20b

Integrating this system, we find that

Tt 42k
. — 2 20
(D(xo)={(x,y).z—zo— g mdz}

Y-Eq
From (9) and the Condition (3) of the theorem it is evident that along the curves @ (z)
the following inequalities are satisfied:
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dx dz dz dx
—_1 >0, T‘QQG’ r3 (g)<'x?:'}¢ (10)
H o < |o<—9280—0— B <0
Then b—Eso o
— z + 2Ep
A; == mAaX (x — zo) == Q q>(z)+.8d

~3E30
In the region z <—e¢, —b <y < E,, the following system is examined in an ana-
logous manner
2 =y— Ey ¥ =Y+ Ey) +B; t=1 z=2x¢ y=—b>b

We obtain the family of curves

Y4+Ey + 28
?(30)‘—‘:((:,3])220—-3&: S ';'_"_____10_‘1,}
-bYE, —¥ ()4 B

along which

dr dr

% |
Td?w"go’ Iy SO 7[(2)>W!v (t1)
S>> —veEat0>0
‘3§su oF
Ay = max (zo — z) = i 2kw 4,
o, —POIFE

6. In this subsection, a region will be constructed in the zy plane, All trajectories
of system (2) enter into this region, Let
C,=G@+4),  Cr=Gl—a—5)

On the basis of (7) we can select such ¢, and C,, that
Co=min{C':C>C =m(€)— k() >4}
Co=min{C':C>C =1(C)=— n(C)> A}

Then we assume Cy = max (C,, Cs, Cy, C,). By virtue of this the following relationships
are valid for all ¢ > ¢,

m(C)— A; 2> a, o(m(C)— A;; €)= b

n (C) 4 Ay < —a, T(n(C) + Ay €)= —b

With each value € > C; we associate some closed curve @(C), which is obtained
when the following curves intersect:

12519 .

Lo J—’_\\ 2 (), ® (m (O)— A,z = m (O),
ST ,/r)“\ T(C), ¥(n(C) +A)and ¥ = n (C),
L@ o ; [ 5 (see Fig. 1. ) Closed regions of the
B s, el -a ot m,ﬁ? 4/ 2y plane, bounded by curves

ﬂ@ﬁ A <., . Tl ; . ¢ ©({C)are designated by Q (¢). It

s, t (R = } ., follows from (9) thatfor |z ] >¢
n I\~ ! .zv-ﬂn,}

5 the functions m {C) and = (C) are

Tte)
continuous, Therefore the family

of curves @ (€) is also continuous
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and fills the region Q (C*)\ Q (C4) for ¢* > ¢,

The trajectory, leaving an arbitrary point (zo, yo), after a finite segment of time
enters into the band -5« y < %, i.e, it turns out to be in some region Q (C). In fact,
for the sake of definiteness let ¥s > b. Since G (z) 4 agz — © for z — oo, the curve
T Oaye* + G (zo) + @ozo; @) for > z, intersects the straight line ¥ = 6  Then
by virtue of (3) and the inequality b > E,, the trajectory also intersects this line and
enters into the band —b < ¥ < .

From inequalities (8), (10), (11) and | E, (¢) | & E,, it follows that the trajectories
cross the curves o (C) from the outside into the region Q (C) for any C > C;. Conse~
quently, in the region Q (C*) \( Q (Cy) (C* 3> C;) the quantity C decreases monotoni-~
cally along the trajectory, If the existence of the limit C+>» Cy is assumed here, then
this will indicate that the trajectory winds up from the outside onto the curve o (C+).
In particular, in the region z > g, —E,o >y > —b the function 2’ |, becomes arhi-
warily close to zero, Howevet, -this is in contradiction to the first equation of system
(2) and the inequality* | E; (t) | < Ey.

Thus, in the course of time all trajectories of system (2) get into the region Q (Cy)
and subsequently remain in it, This completes the proof of the theorem,

Note: Under the conditions of the theorem the requitement | g (z) | € g0 < > is
essential, Thus, for the equation

z' 4+ sign 2’ 4+ z = sin ¢
the statement of the theorem is not valid [3],

BIBLIOGRAPHY

1, Pliss, V,A,, Nonlocal Problems of the Theory of Oscillations, Academic Press,
New York and London, 1966,

2. Reissig, R,, Sansone, G,, and Conti, R,, Qualitative Theorie nich-
tlinearer Diefferentialgleichungen, Roma, Edizioni Cremoneze, 1963,

3, lorish, Iu,I,, Vibration Measurements, M,, Mashgiz, 1956,

Translated by B, D,

BIFURC ATIONS IN THE VICINITY OF A "FUSED FOCUS"

PMM Vol, 35, ¥5, 1971, pp. 937-941
N, A, GUBAR'
(Gor'kii)
(Received November 26, 1970)

Conditions are presented for the existence of bifurcation of a singular point of
the type of a "fused focus”, The fusing is accomplished with ordinary trajecto-
ries under the assumption that the general integrals are known for both systems
forming the "fused system”,

In the approximation of analytical characteristics in the equations of motion
of dynamic systems by piecewise linear or relay functions on the lines of fusing,
singular points can arise which are fused from ordinary or singular trajectories
of systems to be fused, When the parameters of the system change, analogies



