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Sufficient conditions are obtained for dissipative behavior of the following equation 

2” + f (z’, 2) + g (2) = e (t) (1) 

This equation is called dissipative [ 11 if for any of its solutions the functions z (t) and 
z’ (t) are uniformly finally bounded for t -. 00, The conditions found here differ from 

those already known (1. 21 because in the conditions nere the functions f and g can 
be bounded and arbitrarily small in comparison to the force term c (t). Namely, the 
folIowing theorem is valid. 

Theorem. Let the following conditions be satisfied. 
1) Piecewise continuous functions f (2, 4, R (z) and e (t) are defined for all values 

ofz,zE(-oo,OO)and tEI6,w). These functions ensure the existence of a solution 
of equation (1) in any point of the phase plane zz’ for any t > 0. 

2) e (4 = el (4 + e, (t), let (t) I Q 60 < ~6 

Ez (t) = s ez (t) dt, IEz(t)(dEao<- 
0 

3) Nondecreasing pieuwise continuous functions 0 and 9 exist such that 

cp (2) Q f (2, 2) i 9 (z), 29 2 E (- 00, w). 2 cp (2) > 0, * (2) 2 0 
cl0 < SUP cp (4, -El0 > hf 9 (4 

4) =g (2) > 0 
lim g(x) -elO>-f$((-a&0-O)>O, Eiig (2) + elo < -*G&0+ 0) =GO - 
z-0 x-r-a, 

5) I g (4 I < go < 00 
Then equation (1) is dissipative. 
Proof 1. Instead of Eq. (1) let us examine the equivalent system . 

f = y + EP (t), y’ = -f (g + E, Cd, 4 - g (4 + el U) (2) 

Let 
dv I - f (v -!- Es, 4 - 8 (4 + el (t) 
dz (2) = y+Ez 

In the II plane let us investigate the Curves 

r (H, a)=={@, y) : QY13_ G (2)+ Qt = H = const), C(z) -1, (2) dr 
0 
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Let now k (C) = min (2’: z >, t’ > n (C) =+ x (n, s; uo) = G (z) + cc& 
l(C)=max(z’: z<z’gm(C)=$%(z, m;--aO)=G(z)-aa,r} 

Functions k (C) and l (Ci are characterized by 
k (C) = min (2’: 2 > 5’ > n (C) =+ a(z; C) = b} 

1 (C) =max{o’:t<z’<m(C)=+~((r; C)=--b} 

From the determination of k (C) and I (q we have directly 

G (I) - ad = max {C (E) - ard} 5g;tJf (5) - croE1 d G (m) = C 

From here it follows thatE~‘tml ’ 

k (c) B P (G (k) + a,k) < p (c), l WI > * G (4 - ad) > v (Cl 

Then, utilizing (5) and (6). we arrive at the statement 

m W) - k (C) + W, 1 (C) - n (C) + a0 for C - UJ (7) 

4. In the ZY plane let us examine the location of trajectories of system (2) with re- 
spect to curves z: (C) = {(z, v): 2 > 78 (C)V y = a (2; C)} 

T (C) = {(z, Y): r <m (C), Y = r (2; C)} 

Functions x (n, z; a,) and x (z, m; -ao) have piecewise continuous derivatives. 
Therefore 

4 
I 

da 

i 

-(g(q+ao)/Y for dx(n,z;cro)/al?:=O 
s-s 

dzc dz 0 for dx(n,z;~)/dz=g(z)+ao>O 

dY 
I 

d7 

( 

-(g(z)-w)/Y for dx(z,m;--)/ds=O 
dzT=dz= 0 for dx(2,m;-_)/~=g(2)--<0 

Then, takfng into account (3) along curves Z and T , we obtain the following inequal- 
ities: dy 

z 22. I 
g (4 + Q 

‘- Y 
dY 

=x rw,Y’+G(r)+a.z;a~) I 

4/ I .t? (4 --QO z+- y 
dy 

= z I I'(Llrrp+G(x)-a$t:-aO) 

(8) 

5. According to Condition (4) of the theorem a quantity a > 0 exists such that 

B T%;“,A I g (4 I - elol> 01 ~(-2Eso-O)>-B, II,&%oi-W<B (9) 

Let us examine in the region 5 > a, -Es0 Q y < b the curves (0 (z,), which are de- 

termined by the differential system 

x’=y+Eao, Y’=-‘P(Y-&,I--B; t = to z = ~0, Y = 6 

Integrating this system, we find, that 
b-E.” 1 uqx,,+{ (z,~):z-xo= \-- z+2Em dzt . cpb)$_B 

I WE,, . I 

From (9) and the Condition (3) of the theorem it is evident that along the curves Q, (zo) 
the following inequalities are satisfied: 
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Then b%o 
Al= malt (z - ~0) = c 

=+2EW& 

-2k ip f4 + B 
iD 

In the region z Q-a, --b < P < Es0 the following system is examined in an ana- 
logous manner 

z’-&j- E 10, Y * = --\p(v + J&o) i-B; t-to z=to, v--b 

We obtain the family of cnrves 

Y (zoo) = (z, y) : 20 - 2 = 

along which 

mm 
Ar = max (20 - 5) i8 

s 

--z-!-a&o & 

-b+E* 
-‘J’(z) + B 

6, ln this s&section, a region will be constructed in the zy plane. All trajectories 
of system (2) enter into this regio& Let 

c, = G (0 + AA CI= G(-a- AS) 

On the basis of (7) we can select such Cs and C,, that 

G = min {c’ : c > C’ =+ m (Cl - 12 (Cl & A,) 
c, = min { C’ : c > c’ =+ i (Cl - n (Cl > &I 

Then we assume C - 8 - max (C,, G, CS, Cd). By virtue of this the following relationships 
are valid for all C > c6 

m (Cl - Al Z 6 o(m (Cl- Al; C) = b 
n ((3 + AI 6--a, 7 (n (C) + AZ; C) = --b 

With each value C > C, we associate some closed 

I 
Fig, 1. 

clwe o (Cl, which is obtained 
when the following curves intersect: 

X CC), Q, (n (C)- A3, s = m (CL 
‘I’ ((2, ‘P (n (c) +Ae) and d, = n (01 
(see Pig. 1. ) Closed regions of the 

ZY plane, bounded by curves 
o (C) are designated by $2 (Ct. It 

follows f&n (9) that for 1 2 I > 0 
the functions m (C) and @ (Cc) are 
continuous. Therefore the family 
of curves 0 (Cl is also continuous 
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and fills the region 0 (c*) \ s2 (co) for c* > c, . 
The trajectory. leaving an arbitrary point (20, v0), after a finite segment of time 

enters into the band -6 B Y % b, i.e. it turns out to be in some region B (C). In fact, 
for the sake of definiteness let Ya > b. Since G (z) + a+ - ~0 for z - 00, the ewe 

I- WrblO + f3 (50) + a$o; a~) for t > 20 intersect5 the straight line Y = 6 Then 
by virtue of (3) and’ the inequality b > E 2. the trajectory also intersects this line and 
enters into the band --b < Y Q b. 

From inequalities (8), (lo), (11) and 1 Es (t) I Q E,, it follows that the trajectories 

cross the curves (D (c) from the outside into the region B (C) for any C > C,. Conse- 

quently, in the region Q (C*) \ Q (Cd (C* > Cd the quantity C decreases monotoni- 

cally along the trajectory. If the existence of the limit C+> C, is assumed here, then 
this will indicate that the trajectory winds up from the outside onto the curve 0~ (C+). 

In particular, in the region 2 > a, -Es0 > y > -b the function z’ I(*, becomes arbi- 
trarily close to zero. Howevet, -this is in contradiction to the first equation of system 

(2) and the inequality’ I Es It) ] Q Eta. 
Thus, in the course of time all trajectories of system (2) get into the region n (C,) 

and subsequently remain in it. This completes the proof of the theorem. 

Note : Ulider the conditions of the theorem the requirement I g (4 I 6 go < O3 is 

essential. Thus, for the equation 
5” + sign z’ + 5 = sin t 

the statement of the theorem is not valid [33. 
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Conditions are presented for the existence of bifurcation of a singular point of 
the type of a “fused focus". The fusing is accomplished with ordinary tla&mo- 

ries mdu the assumption that the general integrals are known for both systems 
forming the “fused system”. 

In the approximation of analytical characterirtics in the equations of motion 
of dynamic systems by piccewise linear or relay functions on the lines of fusing, 
sin@ar points can arise which are fused from ordinary or singular trajectories 
of systems tn be fused. When the parameters of the system change, analogies 


